## Sets and Dperations

A set is a collection of objects without repetition.
$\mathrm{A}=\{1,2,4,5\}$
$A=\{x / x$ is integer $2 \leq x \geq 20\}$
Empty set $\rightarrow$ Ø
$A=\{1,2,3, \ldots \ldots, 20\} \rightarrow$ Finite set
$\mathrm{N}=\{1,2,3, \ldots \ldots \ldots \ldots \rightarrow$ Infinite set

## Binary operations

1. AU B, union of $A$ and $B$, is $\{x / x$ is in $A$ or $x$ is in $B\}$
2. $A \cap B$, the intersection of $A$ and $B$, is $\{x / x$ is in $A$ and $x$ is in $B\}$
3. $A / B$, the difference of $A$ and $B$, is $\{x / x$ is in $A$ and $x$ is not in $B\}$
4. $A \times B$, the Cartesian product of $A$ and $B$, is the set of ordered pairs
$(a, b)$ such that $a$ is in $A$ and $b$ is in $B$.
5. $2^{\mathrm{A}}$, the power set of $A$, is the set of all subsets of $A$.
6. Equality
$\mathrm{A}=\mathrm{B}$, iff
$A \subseteq B$
$B \subseteq A$

## Example:

Let $A=\{1,2\}, B=\{2,3\}$ then
$\mathrm{A} U \mathrm{~B}=\{1,2,3\}$
$\mathrm{A} \cap \mathrm{B}=\{2\}$
$A / B=\{1\} \quad$ OR Sometimes this is also written as A-B
$\mathrm{A} \times \mathrm{B}=\{(1,2),(1,3),(2,2),(2,3)\}$
And

$$
2^{\mathrm{A}}=\{\emptyset,\{1\},\{2\},\{1,2\}\}
$$

## Note:

If A and B have $\mathrm{n}, \mathrm{m}$ members respectively, then $\mathrm{A} \times \mathrm{B}$ has nm members and $2^{\mathrm{A}}$ has $2^{\mathrm{n}}$ members.

## Remark:

We can construct a new language by using any one of the above operations.

