Sets and Operations

A set is a collection of objects without repetition.

A={1,2,4,5}

 $A = \{x/x \text{ is integer } 2 \le x \ge 20\}$

Empty set $\rightarrow \emptyset$

 $A=\{1, 2, 3, \dots, 20\} \rightarrow Finite set$

 $N=\{ 1,2,3, \ldots \} \rightarrow$ Infinite set

Binary operations

- 1. AU B, union of A and B, is $\{x / x \text{ is in A or } x \text{ is in B}\}$
- 2. A \cap B, the **intersection** of A and B, is { x / x is in A and x is in B}
- 3. A / B, the **difference** of A and B, is $\{x / x \text{ is in A and } x \text{ is not in B}\}\$

4. A x B, the Cartesian product of A and B, is the set of ordered pairs

(a, b) such that a is in A and b is in B.

5. 2^{A} , the **power set** of A, is the set of all subsets of A.

6. Equality

A=B, iff

A⊆ B

B⊆ A

Example:

Let A= $\{1, 2\}$, B= $\{2, 3\}$ then A U B = $\{1, 2, 3\}$ A \cap B = $\{2\}$ A / B = $\{1\}$ OR Sometimes this is also written as A-B A x B = $\{(1, 2), (1, 3), (2, 2), (2, 3)\}$ And $2^{A} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

Note:

If A and B have n, m members respectively, then A x B has nm

members and 2^A has 2^n members.

Remark:

We can construct a new language by using any one of the above operations.